Multi-frame Measurement Fusion for State Estimation
نویسنده
چکیده
David Kroetsch Master of Applied Science University of Waterloo September 2007 Multi-frame Measurement Fusion for State Estimation Simultaneous Localization and Mapping (SLAM) is a technique used by robots and autonomous vehicles to build up a map while operating in an unknown environment, while at the same time keeping track of a current position estimate. This process is not as straightforward as it may sound. Due to inherent uncertainties in tracking the robot’s motion and observing the world around it, errors accumulate. Incorporating External Localization (EL) sensors, such as Global Positioning System (GPS) receivers, which are not subject to the same type of drift over time, can allow a system to eliminate errors from the SLAM process. This, however, requires the system to work with measurements from both the SLAM and EL coordinate frames. Since the SLAM coordinate origin is dependent upon the vehicle’s starting location, which is unknown, the relationship between it and the EL frame is unknown and must be estimated. The main contributions of this thesis arise from a novel approach to integrating EL with SLAM, by estimating a transformation between the SLAM and external reference frames. The Constrained Relative Submap Filter (CRSF) SLAM is a computationally efficient SLAM filter operates on a series of local submaps, instead of one large map, as with Extended Kalman Filter (EKF) SLAM. By integrating the transformation estimation process with CRSF SLAM , a method to correct submap locations with EL is presented. This eliminates long term estimation drift, aids in loop closing and allows for accurate map generation with a reference to an external frame.
منابع مشابه
A New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملMulti-objective Measurement Devices Allocation Using State Estimation in Distribution System
Allocation of measurement devices is a necessity of distribution system which is an application of state estimation. In this paper, the problem of active and reactive measurement devices is modeling using a multi-objective method. The objectives of the problem are to minimize the use of measurement devices, increase in state estimation output, improve the state estimation quality and reduce cos...
متن کاملA New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant
This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...
متن کاملMultiple-sensor Fusion Tracking Based on Square-root Cubature Kalman Filtering
Nonlinear state estimation and fusion tracking are always hot research topics for information processing. Compared to linear fusion tracking, nonlinear fusion tracking takes many new problems and challenges. Especially, the performances of fusion tracking, based on different nonlinear filters, are obviously different. The conventional nonlinear filters include extended Kalman filter (EKF), unsc...
متن کاملCentralized Fusion Estimators for Multi-sensor Systems with Multiplicative Noises and Missing Measurements
This paper is concerned with the centralized fusion estimation problem for multi-sensor systems with multiplicative noises in state and measurement matrices and missing measurements. Based on the innovation analysis approach, the centralized fusion estimators including filter, predictor and smoother are developed in the least mean square sense. The steady-state estimators are also studied. A su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007